PACE INSTITUTE OF TECHNOLOGY \& SCIENCES::ONGOLE (AUTONOMOUS)

II B.TECH I SEMESTER END SUPPLEMENTARY EXAMINATIONS, MARCH/APRIL - 2023 DATA STRUCTURES
(Common to ECE,CSE,CSIT,IT,CSE(IOTCSBT),AIDS, AIML Branches)
Time: 3 hours
Max. Marks: 60

> | Note: Question Paper consists of Two parts (Part-A and Part-B) |
| :---: |
| PART-A |
| Answer all the questions in Part-A $(5 \mathrm{X} 2=10 \mathrm{M})$ |

Q.No.		Questions	Marks	CO	KL
1	a)	Compare and contrast binary and tail recursions.	$[2 \mathrm{M}]$	1	2
	b)	Define stack. Write the pseudo code to perform the push operation on the stack.	$[2 \mathrm{M}]$	2	3
	c)	Discuss the priority queue in brief.	$[2 \mathrm{M}]$	3	2
	d)	Mention the properties of the binary search tree. Give one example of a binary tree.	$[2 \mathrm{M}]$	4	2
	e)	Write the problem statement for Dijkstra's shortest path.	$[2 \mathrm{M}]$	5	2

PART-B
Answer One Question from each UNIT (5X10=50M)

Q.No.		Questions	Marks	CO	KL
UNIT-I					
2.	a)	Define binary search and explain its working principle with an example.	[5M]	1	2
	b)	Discuss asymptotic notations with a suitable example.	[5M]	1	2
OR					
3.	a)	Explain the space and time complexity of an algorithm with an example.	[5M]	1	2
	b)	Write an algorithm to generate the Fibonacci sequence using recursion.	[5M]	1	2
UNIT-II					
4.		Write the algorithm for merge sort. Sort the following list of elements by using merge sort. $26,6,32,19,6,20,21,34,49$	[5M]	2	2
OR					
5.		Convert the following infix expression into a postfix expression $\mathrm{A}-(\mathrm{B} / \mathrm{C}+(\mathrm{D} \% \mathrm{E} * \mathrm{~F}) / \mathrm{G}) * \mathrm{H}$ Write the steps of the algorithm.	[5M]	2	3
UNIT-III					
6.		What is the limitation of a simple queue? Write a ' C ' program to implement the basic operations of a circular queue.	[10M]	3	3
OR					
7.		Illustrate an algorithm to insert a new node at the beginning, at the middle position, and at the end of the singly linked list.	[10M]	3	2
UNIT-IV					
8.	a)	Discuss the operations that can be performed on binary trees.	[5M]	4	2
	b)	What is an AVL tree? Explain the balance factor associated with a node of an AVL tree.	[5M]	4	2
OR					

9.	a)	For a binary tree T, the pre-order, and in-order traversal sequences are as follows. Pre-order: A B L M K N P Q In order: L B M A N K P Q Draw a binary Tree.	[7M]	4	3
	b)	Compare and contrast the B tree and the B+ tree.	[3M]	4	2
UNIT-V					
10.		Write an algorithm to perform the Depth-First Search technique on the graph. Illustrate with an example.	[10M]	5	2
OR					
11.		Write Kruskal's algorithm to find the minimal spanning tree for the given graph. Find the minimal spanning tree for the following graph.	[10M]	5	3

