HALL TICKET NUMBER

PACE INSTITUTE OF TECHNOLOGY & SCIENCES::ONGOLE (AUTONOMOUS)

II B.TECH I SEMESTER END SUPPLEMENTARY EXAMINATIONS, MARCH/APRIL - 2023

DATA STRUCTURES

$(Common \ to \ ECE, CSE, CSIT, IT, CSE(IOTCSBT), AIDS, \ AIML \ Branches)$

Time: 3 hours

Max. Marks: 60

Note: Question Paper consists of Two parts (Part-A and Part-B) PART-A

Answer all the questions in Part-A (5X2=10M)

Q.No.		Questions	Marks	CO	KL
1	a)	Compare and contrast binary and tail recursions.	[2M]	1	2
	b)	Define stack. Write the pseudo code to perform the push operation on the stack.	[2M]	2	3
	c)	Discuss the priority queue in brief.	[2M]	3	2
	d)	Mention the properties of the binary search tree. Give one example of a binary tree.	[2M]	4	2
	e)	Write the problem statement for Dijkstra's shortest path.	[2M]	5	2

PART-B

Answer One Question from each UNIT (5X10=50M)

Q.No.		Questions	Marks	CO	KL			
UNIT-I								
2.	a)	Define binary search and explain its working principle with an example.	[5M]	1	2			
	b)	Discuss asymptotic notations with a suitable example.	[5M]	1	2			
OR								
3.	a)	Explain the space and time complexity of an algorithm with an example.	[5M]	1	2			
	b)	Write an algorithm to generate the Fibonacci sequence using recursion.	[5M]	1	2			
UNIT-II								
4.		Write the algorithm for merge sort. Sort the following list of elements by	[5M]	2	2			
		using merge sort.						
		26, 6, 32, 19, 6, 20, 21, 34, 49						
OR								
5.		Convert the following infix expression into a postfix expression $A_{\mu}(D, C, T, T)$	[5M]	2	3			
		A-(B/C + (D%E *F)/G) * H Write the steps of the algorithm						
	1	UNIT-III						
6.		What is the limitation of a simple queue? Write a 'C' program to implement the basic operations of a circular queue.	[10M]	3	3			
		OR						
7.		Illustrate an algorithm to insert a new node at the beginning, at the middle position, and at the end of the singly linked list.	[10M]	3	2			
	UNIT-IV							
8.	a)	Discuss the operations that can be performed on binary trees.	[5M]	4	2			
	b)	What is an AVL tree? Explain the balance factor associated with a node of an AVL tree.	[5M]	4	2			
OR								

R18

9.	a)	For a binary tree T, the pre-order, and in-order traversal sequences are as follows	[7M]	4	3		
		Pre-order: A B I M K N P O					
		In order: I P M A N K D O Drow a binory Trac					
		III OIDEI. L'D M'ANKPQ Diaw a binary free.					
	b)	Compare and contrast the B tree and the B+ tree.	[3M]	4	2		
UNIT-V							
10		Write an algorithm to perform the Depth-First Search technique on the	[10M]	5	2		
10.		graph. Illustrate with an example.					
OR							
11.		Write Kruskal's algorithm to find the minimal spanning tree for the given graph.	[10M]	5	3		
		Find the minimal spanning tree for the following graph.					
		9					
		7 A 6 B 5					
		S 3 4 2 T					

R18
